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Abstract-Two new vilriationill funetionals arc introduced for buckling analysis of cylindrical
shells. In the first, admissible functions satisfy all the equilibrium equations and the Euler-Lagrange
equations emerge as a set of compatibility equations. In this sense this procedure complements the
well known minimum potentiill energy method. In the second. the transverse equilibrium and
membrane compatibility requirements are satisfied by the admissible functions and the system
equations emerge as a set of membrane equilibrium and transverse compatibility equations. This
formulation can be considered as complementary to Von Karman's well known method. The new
functionals are used to obtain solutions for 2 classic examples.

I. INTRODUCTION

In the theory of elasticity variational formulations have provided not only a unifying point
of view but they also have facilitated the development of many approximate methods of
analysis. In the small deformation theory, a number of interrelated variational functionals
have been developed and an excellent discussion of these can be found in the text
"Variational Methods in Elasticity and Plasticity-Washizu, 1968". For problems of large
deformation analysis invariably the principle of minimum potential energy has been
employed for development of approximate methods of analysis and the development of
other variational functionals has not received extensive attention.

The large deflection analysis of thin circular cylinders is of considerable technical
importance in view of the extensive use of such cylinders in engineering structures. In Ref.
[1], four variational formulations for large deformation analysis of thin cylindrical shells
were examined for purposes of developing approximate methods of analysis. Of these the
first two are well known namely "minimum potential energy" and "Von-Karman"
formulations, the remaining two are complementary to these formulations.

In this paper, the two new functionals derived in [I], namely the complementary energy
and the complementary Von Karman functionals, are linearized and thereby the corre
sponding functionals for the linear buckling analysis ofcircular cylinders are obtained. The
application of these functionals is illustrated through some simple examples.

2. BASIC EQUATIONS

For the circular cylindrical shell theory which is of concern to us here, the essential
equations may be written as follows:
Strain, curvatures-displacements relations

Equilibrium equations

{c}=[D]{u}+![WL.{W}...+ W{R}

{IC} = {W}...x'

[Dr{N} =0

{L}T{M} + ({W}T...... - {R}1){N} = -po

(2.1)

(2.2)

tThe results presented here were obtained in the course of researeh sponsored by the Natural Sciences and
Engineering Research Council of Canada. Grant No. A-1628.
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Constitutive equations

where
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{N} == C[C]{c}. {M} == - D[C]{K} (2.3)

{£V= [£xx £118 £..e], {K V= [Kxx Koo K..eJ

{uY = rUx UoJ. {wg= [~x ~ ~oJ

{RY=[O ~ oJ. {wgx=[W.tx ~2W.Bl1 ~W.r6J (2.4)

a/ax 0 W,x 0

[D) = 0
I a

0
I

= [Wl.xRaO • -WeR .

I a I a I
2RaO 2ax -We W,xR '

[
02 I a2 2 a2

]

{L V= ax2 R2002 RoxoO •

{MY = [M... Moo MxtlJ. {Ny = [Nxx Noo NxtlJ

and various symbols have their conventional meanings.
A lucid account of the derivation of above equations and their inherent simplifying

assumption can be found in Ref. [5. 6]. If along parts of circular cylindrical sheU's
boundary. denoted by Sit, kinematic conditions are prescribed and along the remaining part
S", force quantities are specified. then the boundary conditions of the shell may be stated
as foUows

Along Sit

Along s"

where

and

{N},. = {AT}... {V}.. = {P},.

{V}/=[-V.. Mnl. {N}/=[N.... NxtI ]

{W}/ = [W W,x]

(2.5)

(2.6)

(2.7)

(2.8)

In the light of above equations we now examine some variational formulations.
For thin circular cylindrical shells the minimum potential energy functional is given by



[I]
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Up =I.e(~{£ YIC]{£ }+ ~{I( }7{C]{1(}- pW)dA
+ L({V}/{W}x-{~}/{u})ds.
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(2.9)

In eqn (2.9) the first integral accounts for the strain energy of the cylindrical shell and
the work of the prescribed distributed load ft whereas the second integral accounts for the
work of the forces prescribed along SII'

For the minimum potential energy principle, the admissible strains {£} and curvatures
{I( } must satisfy certain compatibility conditions to ensure that the associated displacement
fields are continuous and single valued. These admissibility conditions will be satisfied
identically if strains and curvatures, entering eqns (2.9), are derived from the displacement
fields via eqns (2.1). Furthermore, the admissibility conditions for the Up require that the
displacements satisfy the kinematic boundary conditions in eqn (2.5).

3. STABILITY OF CIRCULAR CYLINDRICAL SHELLS

In order to obtain the stability condition ofcircular cylindrical shells we consider some
equilibrium positions in the neighborhood of an initial equilibrium position. To this end
we express the displacement, the moments and the membrane forces in two parts, as
follows:

{u} = {u }o + {u h, W = Wo+ WI

{N} = {N}o+ {N} .. {M} = {M}o+ {Mh

(3.1)

(3.2)

where {u}o and Woare the displacements corresponding to the initial position while {uh
and WI are the incremental displacements. {N}o and {M}o are also defined as the initial
membrane forces and moments while {Nh and {Mh denote the incremental quantities.

Using the definitions (3.2) in the equilibrium equations (2.2) and eliminating the
nonlinear quantities we obtain

Equilibrium equQtions
[Df{Nh =0

{LY{M}, + {N}o{W.}.xx- {RV{N}I = 0 (3.3)

where we have presumed {Wo}.x are negligibly small and the initial force field {N}o and
{M}o are in self-equilibrium, i.e.

[DnN}o=O

{LV{M}o - {RV{N}o = - p. (3.4)

If we substitute the definitions (3.1) into the kinematical relations (2.1) and assume that
{WoL is negligibly small, we obtain

where

ss Vol. 20. No. ~B

{£}'={£}o+{£h
{I(}, = {I(}o + {I(h

{£}o =[D]{u}o + Wo{R}, {£h=[D]{uh+ W,{R}

{I( 10 = {Wo}..w {I( h= {WI} .xx'

(3.5)

(3.6)
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Using the constitutive equations

S. DOST and B. TABARROK

{N}o =C[C]{£ }o, {M}o = - D[C]{K}O

{NL = C[C]{£}l> {Mh = - D[C]{K}l

the potential energy functional may be expressed as follows:

np
o=L\~{£ }/[C]{£ }o+ ~{K }/[C]{K}o - fiWo)dA

+L({P}J:{Wo}x- {R}J:{u}o)ds

n/ =L(C {£ }o"'fC]{£h+ D{K }o"'[C]{IC h)dA +L({V}J:{W.}x

+ {P}iAWo}x - {R}lx{u hx - {R}iAu }o)ds

n/ = J/~{£ h7'[Cl{£}. + ~{IC l/IC]{IC h +~{N}o[Wllx{WI}...)dA

+L({P}ix{WI}x- {R}iAuh)ds.

The variation of np can now be written as follows;

(3.7)

(3.8)

since {) np
o=o.

In {)np
1 the area integral is the variation in the strain energy of the shell at the initial

equilibrium position resulting from the incremental displacements {) {u hand {) WI' and the
boundary integral is the work done by the surface forces at the initial position of
equilibrium (through the same incremental displacement). Hence since the position of the
shell, which is characterized by the displacements {u}o and Wo, is a position of equilibrium
we have

(3.11)

which is merely the mathematical formulation of the principle of virtual displacements at
the first of the two positions of equilibrium (see Novozhilov[7]).

Furthermore, using (3.11) in (3.10) we obtain

(3.12)

This is the variational formulation of the problem of elastic stability.
The complementary energy functional n/ can now be easily derived from n/ by

following the development outlined in Ref. [I]. If we do so, we obtain

n/(M, N, W) = - L(2~{N}7'[C]-I{N} + 2~ {M}7'[C]-I{M} +~{wg[Nlo{W}.x)dA

- f..<{V}/{Jf'}x -{N}/{u}x)ds- f..«{V}/-{P}/){Whx

-({N}/ - {R}/>{uh)ds (3.13)
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where Vx in {V}x is the effective shear given by

2 0 I 0
Vx=='RMxl1.8+ Mxx.x+ NxxW,x+ 'RN/I8W,9'
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(3.14)

For the sake of simplicity we have dropped the subscript I for the incremental quantities.
The moments {M}, membrane forces {N} and Ware to be varied in such a manner as
to satisfy the equilibrium equations (3.3). To this end. let

{N} == {</> },xx, {M} == [D1J{V} - W{N}o +</>{R} (3.15)

where </> is the Airy stress function and {VV == [V, V] are the Southwell stress functions [8],
and

{</> gx == [~2 </>.00 </>,xx -~</>,x9J

0
I a
'Roo

[D,J==
a

0 (3.16)ox
I a 1a---2RoO 20x

In terms of the stress functions, De2 may be expressed as

De2(V, V, </>, W) == - L2~{</> },xJCJ-I{</> },xx+ ~«(Dll{V}

- W{N}o+ </>{R})[CJ-l([D1l{V} - W{N}o+ </>{R})

+~{Wg[Nlo{W},x>dA - 1.({V}/{W}x

- {</> }/{u})ds - 1. «{V}/ - {P}/){W}bx

- ({</>}/ - {R}}){uh)ds (3.17)
where

(3.18)

From the variation of De2 we obtain the following Euler-Lagrange equations:

In the domain

I 2 1
6</>: F'xx.oo - Jtx9,x9 +£H,xx - 'Rlexx == 0

I
6V: -'Rlex9.9 + leH,x == 0

16V: -Ie G-le.... ==0R xx." _,x (3.19)
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Equation (3.16) will be recognised as the compatibility conditions for circular cylindrical
shells. The corresponding expressions along the boundaries of the cylinder are not given
here for the sake of brevity (see [I]).

Next consider a procedure which complements Von Karman's formulation. The
corresponding functional denoted, by nMu(i.e. second mixed functional) can be derived
from n/ by a procedure outlined in Ref. [IJ. The resulting functional takes the form

n~III(£' M, W) = L(~{£ }1'[C]{£} -~{wg[NJo{WL - 2~ {MY'

[C]-I{M} - W{R}T{N} )dA

- L«{V}/-{V}/){W}bx+{N}/{U})dS (3.20)

- L{V}/{Jf'}x ds.

Now let us satisfy the transverse equilibrium equations identically. To this end we write
the moments {M} in terms of some stress functions {U} and transverse displacements W
as well as a new set of variables defined below:

where

{M} =[Dtl{ U} - W{N}o + {a}

N~x ~ f uxdx

{N}o= Noo , {a} = C fuodO

N~ ~~ffWdxdO

(3.21)

(3.22)

Using the kinematical relations (3.6)2 and the definition (3.21) in (3.20), we now express
the functional n~m as follows:

nitu(u, u, W) = L(i[DHU} + W{R})1'[C]([D]{u} + W{R}) - 2~([Dtl{U}

- W{N}o+{a})1'[C]-1([D 1{U}- W{N}o+{tX})

-~{W}.x[N]o{WL- W{R)T{aL)dA - L({V}/ (3.23)

- {V}/){Whx+ {NY{u}x> ds - L {V}xT{Jf'}x dS

where

(3.24)

in {V}x'
From the variation of nit/l we obtain
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~ux: Nxx.x+ ~NxII.o +~ (f"xx dx - W,x) =0

~uo: NxII.x+~NOO.O+c(f"OOde- ~2W.O)=0

.I: • 0 o( 1 )uW. Nxx("xx - W,xx) + 2Nxii "xii - R W,x8

+N~"00- ~2W.00) +~(ff"xlldx dO -~W )=0

1
~U: - "oo,x +R"xII.o = 0

I
~V: - R"xx.o + "xII,x =O.
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(3.25)

In eqns (3.25) we have the membrane equilibrium equations and the transverse com
patibility equations. These are complementary to the Euler-Lagrange equations one
obtains from Von Karman's formulation. It is worth noting that in (3.25) the coupling
between the transverse and the membrane actions is imposed via some integrals which have
a global, rather than a local character. In the next section we illustrate the use of nr and
nMII for computation of buckling loads.

4. SOME ILLUSTRATIVE EXAMPLES

As a first illustrative example for the present two formulations, complementary and
mixed II, consider the classical buckling analysis of a simply supported cylinder under
uniform axial load.

(i) The complementary formulation
For this case, it is customary to assume

N~x= -N,N~= O,N~=O. (4.1)

The moments {M} in terms of the stress functions U, V and tP, and W take the following
form

We now choose

where

I I I
Mxx =R v,o + NW + RtP, Nxx = R2tP.OO' Moo = U,x

yl ) I
N'H) = tP.xx' Mxo = - 'i\..RU,o + v,x ,NxII =R tP.xII'

mn
A.=y,m=I,2, ...

(4.2)

(4.3)

By using these functions in the functional (3.17) we obtain

~+~.
vA. N r
R R

0 0 0

lP'nc
2 = [II. 112 II.] A,2 AN 0 0 0 112

(4.4)

sym N2 0 0 D(I - v2)A.2N II.
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It remains to extremise the above form of n/ with respect to PI' P2 and P. to obtain the
following non-conventional eigenvalue equation for N.

[~ +£" ~A

~:J[:J
0 0 0

p, ]R C R
=

.1.2 0 0 P2
sym sym D(l- v2)A2N P.

or

(l _ v2)D).·
2 Eh p 22

N 1 D • =ND(I - v ).1. P.·

R2+ Eh
A
•

(4.5)

(4.6)

The eigenvalue N may be cancelled from both sides of the equation but, in so doing, we
tacitly agree to discount zero and infinite values for N.

Finally, the critical value of N is obtained as

(ii) Mixed formulation II

12 Eh
N =D" + A2R2' (4.7)

(4.9)

In this case we know that Wis independent ofO. Thus, for the moments in (3.21) we
write the following forms

MU=~V.8+~ fUxdx+ ~2ffWdXdX+NW

M88 =UoX +CfU8 dO (4.8)

Mx8 =-K~U.8+ VoX}

Considering the boundary conditions and using the constitutive equations, (4.8) becomes

Mxx =[~~PJ + (N - R~2)P3J sin Ax

Moo = - AP. sin AX

Mx8 =O

where we have taken

Ux=PI cos Ax, U8 =P2' W =P3 sin AX,

U = P. cos Ax, V = Ps.

Using eqns (4.9) and (4.10) in the functional n~1I we obtain

(4.10)
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Extemization of this functional in eqn (4.11) yields

from the determinant, (or on eliminating PI and P4) we find

from which we obtain once again

=0
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(4.12)

(4.13)

(4.14)

It will be noted that results from the two formulations are coincident. This is because in
both cases the exact solution is obtained. For loadings and boundary conditions for which
exact admissible functions cannot be obtained, one will obtain different approximate
solutions for the buckling loads and eigenmodes, for the two procedures.

For the second example, we consider a simply supported cylinder under uniform lateral
pressure.

(i) The compleme1ltary formulatio1l
In this case

(4.15)

(4.16)

(4.17)

and we choose the stress functions U, V, and cP and the displacement W as follows:

U =PI cos Ax sinn 0, W =PJ sin Ax sinn 0,

V = P2 sin AX cosn 0, cP = P4 sin Ax sinn 9.

Using the expressions (4.16) in (3.15) and substituting them into n/ in (3.17), after some
manipulations we obtain

n 2 _ 1CRL I { I (P P )2 P AP 2
c - - 2 2(1 _ v2)D R2 4 - n 2 + (N J - .)

2v ~n)2
- R (P4 - nP2)(NPJ - API) + --Y\"RPI + AP2

+~(~: + A2YP42- (I - V2)D~:NPl}.

The extremisation yields

n 11

v"RN - R2

2

- (1 - v2)D!!.-N + N2 - ~N =0R2 R

~(~: + A2y+ ~2 (4.18)

I-vA.1l---
2 R

n2 l+vA2R 2 +-2-

sym

-AN
A

v-
R
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On eliminating Ph P2 and P4 we find

or we then obtain

(ii) Mixed formulation II
In this case we choose

1 Cv r
M xx ="Rv,o+/i JUxdx

M68 =UoX + NW + CIIW dO dO + CIuodO

Mxe = -KiUJ + VoX)

and for the stress functions and the displacement, we write

Ux = PI cos Ax sinn 0, U= P4 cos Ax sinn e,
Uo = P2 sin Ax cos ne, V=Ps sin Ax cos nO,

W = P3 sin Ax sin 0

ni,l/ becomes

(4.19)

(4.20)

(4.21)

(4.22)

From the extremisation of this functional we obtain

I-VII.
-TiiA

.ym

(4.24)
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(4.25)

Once again we have coincident results from the two procedures since in both cases exact
admissible functions were used in the extremisation.

CONCLUDING COMMENTS

In the foregoing we have introduced two new functionals for buckling analysis of thin
circular cylinders. In the first all equilibrium requirements are satisfied apriori and the
system equations emerge as a set of compatibility equations. In this sense we refer to this
procedure as the complementary energy principle, in spite of the fact that the transverse
displacement appears in this functional explicitly. In the second functional the transverse
equilibrium and membrane compatibility equations are satisfied a priori. The
Euler-Lagrange equations of this functional emerge as a set of membrane equilibrium
equations and transverse compatibility equations. These equations are in a sense com
plementary to those that are obtained from Von Karman's formulation. However in the
present case the system equations are integrodifferential in form.

The difference in the form of various functionals can be used to advantage in
developing numerical methods of analysis. For instance, in a finite element procedure, the
variables in nMII need only to satisfy Co continuity across element boundaries. It is well
known that to satisfy the more stringent C continuity explicitly one must employ high
order polynomials. The major drawback of such finite element models is the appearance
of not only the variables but also several orders of their derivatives as model variables.
By contrast nM/I allows one to use low polynomials as admissible functions for devel
opment of simple elements.

In finite element developments based on the potential energy functional, the admissible
functions should include all six rigid body modes. This condition is rarely satisfied for
cylindrical shell elements. The availability of alternate functionals implies that such
requirements need not always be satisfied explicitly since they may be satisfied implicitly
via the process of extremisation. Also it is important to note that in various formulations
the errors of approximation will be confined to different sets of equations. Thus in the case
of the potential energy functional all the errors of approximation will be confined to the
equilibrium equations. By contrast in the complementary energy functional there will be
no errors in the equilibrium equations. In this case all the errors are to be found in the
compatibility equations.

Finally one can see that in a complete analysis two sets of variables are of interest. The
first set which appear explicitly in the functional are usually computed relatively accurately.
The second set. which are often obtained as derivatives of the first, are found to be less
accurate as a consequence of differentiation. Thus in using the potential energy functional
one can anticipate quite accurate results for displacements and less accurate results for the
forces and moments. In the other functionals the primary and derived sets of variables are
different and accordingly one can anticipate differing degrees of accuracies for variables
of interest, from the other functionals.
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